دوستان به جای 09357795285 شماره جدید 09217354724 رو بگیرید

دوستان به جای 09357795285 شماره جدید 09217354724 رو بگیرید

مقاله دانشجویی

طراحی سایت


مقاله دانشجویی
 
تحقیق پروزه ومفالات دانشجویی
Yahoo Status by RoozGozar.com

نوشته شده در تاريخ دو شنبه 27 آذر 1391برچسب:, توسط aryan

 

استخراج ” آزمایشگاه شیمی آلی”

 

 

استخراج روشی است برای جداسازی که مستلزم انتقال جسمی از یک فاز به فاز دیگر است.این روش بر مبنای پخش فاز بنا نهاده شده است .جسم می تواند در بین دو فاز نامحلولی که با آنها در تماس است پخش متعادلی پیدا کند و نسبت این تعادل بستگی به پایداری نسبی جسم در هر یک از دو فاز دارد.زمانی که دو فاز مایعات مخلوط نشدنی باشند روش استخراج مایع – مایع نامیده می شود.

الف.استخراج مایع – مایع

در بعضی مواقع لازم است برای بازیابی یک جسم آلی از محلول آبی از روش غیر از تقطیر استفاده می شود.یکی از این راه ها تماس دادن محلول آبی با یک حلال غیر قابل امتزاج با آب است.اگر حلال خاصیت جدا سازی را داشته باشد بیشتر مواد آلی از لایه آبی به حلال آلی (غیر قابل امتزاج با آب ) انتقال پیدا می کند.

این روش را که ” جسم حل شده در آب به وسیله یک حلال آلی دیگر جدا می شود ” استخراج می نامند.یکی از خواص حلال که برای استخراج به کار برده می شود این است که قابلیت حل شدن آن در آب یا هر ماده دیگری که جسم آلی را در خود حل کرده کم باشد و یا اصلا حل نشود.همچنین باید فرار باشد تا به راحتی بتوان آن را از ترکیب یا ترکیبات آلی استخراج شده جدا کرد.

بنابراین جسم استخراج شونده باید در حلال استخراج کننده به خوبی حل شود و قابلیت انحلال در این حلال بسیار بیشتر از آب باشد,ضمن اینکه حلال استخراج کننده نباید هیچ واکنشی با آب و یا مواد قابل استخراج بدهد.

برای انتخاب حلال مناسب برای استخراج بررسی هایی مشابه آنچه که در بلور گیری انجام می دهند لازم است

۱-به خوبی جسم مورد استخراج را در خود حل کند (ضریب توزیع مناسب داشته باشد )

۲-حلالیت آن در حلال جسم مورد نظر کم باشد

۳-نا خالصی ها و یا اجسام دیگر موجود را خیلی کم و یا اصلا استخراج نکند

۴-به سهولت بتوان آن را پس از عمل استخراج شده جدا کرد

۵-واکنش شیمیایی با جسم حل شونده نداشته باشد

ساده ترین حالت استخراج آن است که جسم در دو حلال غیر قابل اختلاط پخش شود.از نظر کمی این پخش را بر حسب ضریب پخش یا توزیع بیان می کنند.در محلول های رقیق یک جسم بین دو حلال غیر قابل امتزاج توزیع می شود تا اینکه نسبت غلظت در یک حلال به غلظت در حلال دیگر عدد ثابتی باشد.

حل شدن ماده استخراجی در هر فاز به دو مورد بستگی دارد:

 ۱-به قابلیت حل شدن ماده استخراج شونده ۲-به حجم هر فاز

اثر نمک روی حلالیت

حلالیت اجسام آلی در آب به طور مؤثری توسط حضور نمک های معدنی حل شده تحت تأثیر قرار می گیرند.برای مثال اتانول که به طور کامل با آب خالص قابل امتزاج است فقط به طور جزئی در محلول های مائی قوی از سدیم کلرید , پتاسیم کربنات و برخی دیگر از نمک های معدنی معین حل می شوند.

این پدیده که از اثر نمک در خارج سازی جسم به وجود می آید به طور متداول با نمک های دارای یون های با شعاع کوچک و بار متمرکز اتفاق می افتد افزایش نمک دو اثر دارد:

الف)حلالیت حلال در آب کم می شود

ب)حلالیت ماده جامد آلی در آب کم می شود

روش استفاده از قیف جدا کننده یا دکانتور

استخراج در کارهای آزمایشگاهی توسط تکان دادن محلول مورد استخراج با حلال درون قیف جدا کننده شیشه ای صورت می گیرد.قیف کشیده مخروطی شکل با دنباله کوتاه برای این منظور به کار می برند قیف حاوی مخلوط را خوب تکان دهید تا تمام مایعات غیر قابل حل به صورت فیزیکی مخلوط شوند,سپس آن را روی پایه ای به حال خود بگذارید تا لایه ها به به طور کامل از هم جدا شوند.به هم زدن شدید مخلوط ها وقتی دلخواه بوده که تولید امولسیون نکند.,زیرا بعدا برای برای جداسازی لایه ها به مزاحمت بر میخوریم.در چنین مواقعی بهتر است لایه ها را خیلی ملایم به هم زد.در ضمن به هم زدن یک دست را باید روی سر قیف و دست دیگر را روی شیر قیف قرار داد تا سر و شیر قیف محکم در جای خود نگه داشته شوند.فشار درون قیف را گاهی با معکوس نگه داشتن (دنباله قیف به طرف بالا) و یک لحظه باز کردن شیر کاهش می دهند.این عمل به ویژه زمانی مهم است که از حلال بسیار فرار نظیر اتر استفاده شود.

احتیاط:دنباله قیف جدا کننده را در موقع کاهش فشار درون آن نباید به طرف افراد دیگر قرار داد زیرا در این زمان قطراتی از مایع درون دنباله قیف با فشار خارج می شود.

در زمان جدا کردن مایعات سر قیف را باید سست کرد و یا برداشت,سپس لایه پایینی را به دقت درون ارلن مایر ریخت ضمنا باید شیر قیف را با دو دست نگه داشت تا از سست شدن آن و هدر رفتن مایع جلوگیری کرد .اگر ماده درون قیف خاصیت خورندگی داشته و یا ارزشمند باشد در عمل بهتر است که یک بشر را زیر قیف قرار داده و سپس قیف را برای هر مدتی که لازم است به حال خود باقی گذاشت اگر فقط یک لایه باید نگه داری شود لازم است دو لایه را تا زمانی که اطمینان کامل حاصل نشده که کدامیک حاوی ماده دلخواه است نگه داری کرد.

همانگونه که مرز دو مایع به نزدیکی شیر قیف برسد سرعت خارج شدن مایع از قیف را باید کاهش داد.پس از اینکه جداسازی انجام شد شیر را بسته و محتویات قیف را به آهستگی به چرخش درمی آورندتا قطرات مایع سنگین تر از درون یک ظرف تمیز می ریزند.لایه بالایی نباید از شیر قیف خالی شود زیرا منجر به آلوده شدن آن با لایه اول که درون دنباله قیف وجود دارد می شود.لایه آلی را معمولا با افزایش معرف خشک کننده جامد از آب جدا می کنند و حلال را به وسیله عمل تقطیر حذف می کنند.

در هر بار استفاده از قیف شیر آن را باید با ماده چرب کننده روان کرد تا ضمن کار با قیف شیر آن محکم نشود و یا مایع قیف نشست ندهد.پس از استفاده از قیف جداکننده باید آن را کاملا تمیز و شیر آن را مجددا چرب کرد تا در یک موقعیت محکم نشود و بعدا به سهولت بتوان آن را باز کرد.اگر از مواد سیلیکون دار برای روان کردن شیر استفاده می کنید باید قبل از تمیز کردن قیف ماده روان کننده را با مخلوط اکسنده از سطح شیشه زدود تا لایه نازک سیلیس روی شیشه به وجود نیاید.مسئله محکم شدن شیر قیف های جدا کننده آن قدر جدی است که بسیاری ترجیح می دهند که قطعات قیف ها را به صورت جدا از هم نگه داری کنند.برای باز کردن شیرهایی که محکم شده اند قسمت خارجی شیر یا بدنه قیف را به وسیله بخار آب گرم می کنند.در همین زمان فشار کمی به شیر وارد می آید و آن را باز می کنند ( در ضمن برای محافظت انگشتان باید از حوله استفاده کرد)

شرح آزمایش:

مقدار ۲۰ میلی لیتر کلروفرم که مقداری آلودگی اسیدی دارد داخل قیف دکانتور ریخته و سپس ۱۰ میلی لیترمحلول ۱۰% سدیم کربنات به آن اضافه کنید در اثر این افزودن مقداری گاز دی اکسید کربن تولید شده که با باز کردن شیر دکانتور خارج می شود حال قیف را به روی خلقه قرار داده و در آن باز کنید بعد از جدا شدن کامل دو فاز فاز زیری که کلروفرم می باشد را داخل بشری جمع آوری نمایید و برای گرفتن آب به آن مقداری کلرید کلسیم به عنوان خشک کننده اضافه کنید و بعد در داخل ارلن تمیز و خشک با یک قیف شیشه ای کاملا خشک و صاف کنید و محلول به دست آمده را به مسئول آزمایشگاه تحویل دهید

استخراج از جامدها:

استخراج آلکالوئیدها از برگها و ساقه ها ,عصاره های معطر از بذرها ,اسانس عطر از گلها و قند از نیشکر اولین نمونه برای عمل استخراج است .حلال های متداول که برای این منظور به کار گرفته می شوند اتر ,متیلن کلرید ,کلروفرم ,استون , انواع الکل ها و آب هستند دستگاه متداول برای استخراج مداوم از جامدات توسط حلال های فرار به نام استخراج کننده سوکسله میباشد.

بخارات حاصل از حلال در حال جوش که درون فلاسک است از لوله عمودی سمت چپ به داخل مبرد بالای دستگاه می رسد مایع متراکم شده که به داخل انگشتانه ای جامدی قرار گرفته است که می بایست استخراج شود محلول محتوی جسم استخراج شده از جامد از خلل و فرج کاغذ صافی انگشتانه ای به خارج نشست یافته و زمانی که لوله سیفون سمت راست پر شود به داخل فلاسک حلال برگردانده می شود درون این دستگاه عمل سیفون به طورمتناوب اتفاق می افتد مایع به فلاسک برنمی گردد تا اینکه سطح مایع درون انگشتانه به قسمت بالای لوله سیفون برسد.هر وقت تمامی مایع درون سیفون و انگشتانه خارج شود,دوباره چرخه پر و خالی شدن سیفون از سر گرفته می شود.

در استخراج جامد-مایع بازده جداسازی به حلالیت ترکیب مورد نظر در حلال استخراج کننده به حجم حلال مورد استفاده و به تعداد دفعاتی که عمل استخراج تکرار می شود بستگی دارد.

عواملی که باعث کاهش بازده استخراج جامد-مایع می شوند عبارتند از : درشتی ذرات مخلوط جامد ,زمان کم تماس حلال با جامد و خوب مخلوط نکردن حلال و جامد.

شرح آزمایش:

۲۵ گرم چای خشک , ۲۵ گرم کربنات کلسیم و ۲۵۰ میلی لیتر آب مقطر را در یک بالن مجهز به مبرد بریزید و بالن را به مدت ۲۰ دقیقه در شعله حرارت دهید تا رفلاکس انجام گیرد زمانی که محلول داغ است آن را توسط کاغذ صافی صاف کنید اگر حرکت محلول در کاغذ صافی کند شد آن را عوض کنید پس از این اعمال مایع زیر صافی را در حرارت اتاق سرد کرده و دوباره آن را با ۲۵ میلی لیتر کلروفرم توسط قیف جدا کننده استخراج کنید .توجه داشته باشید که دکانته کردن به مدت ۵ الی ۸ دقیقه انجام گیرد و به هیچوجه شدیداً هم زده نشود زیرا تولید امولسیون می کند برای این منظور خیلی آهسته چند بار قیف را وارونه و سپس به جای خود برگردانید سپس اجزای استخراج شده را که لایه زیر می باشد در یک ارلن ریخته و توسط تبخیر کلروفرم کافئین را به صورت پودر جمع آوری کند.

 


نوشته شده در تاريخ دو شنبه 27 آذر 1391برچسب:, توسط aryan

آموزش PCR

 

PCR یا واکنش زنجیره ای پلیمراز (Polymerase Chain Reaction)، تکنیکی است که با استفاده از آن می توان در مدت زمان کوتاهی قطعه خاصی از مولکول DNA را در شرایط آزمایشگاهی میلیون ها بار تکثیر نمود. این قطعه DNA ممکن است یک ژن، بخشی از یک کروموزوم یا بخش هایی از ژنوم یک موجود باشد. البته در تکثیر DNA با روش PCR محدودیت هایی نیز وجود دارد که مهمترین آنها اندازه قطعات قابل تکثیر می باشد به طوری که حداکثر اندازه قطعه هایی که با روش PCR معمولی تکثیر می گردد، ۵ هزار نوکلئوتید (kb 5) و در روش های بهینه شده تا ۲۰ هزار نوکلئوتید (kb 20) می باشد. با این تعریف، PCR همانند یک دستگاه فتوکپی عمل می کند که بوسیله آن می توان صفحاتی از کتاب ژنوم هر موجود را به تعداد دلخواه و مشابه نسخه اصلی (البته در مواردی همراه با خطاهای جزئی) تکثیر نمود. اساس این روش بسیار ساده بوده و مانند واکنش همانندسازی DNA در موجودات زنده توسط آنزیم DNA پلیمراز صورت می گیرد. در موجودات زنده، مجموعه ای از چند پروتئین و آنزیم در فرآیند همانند سازی DNA نقش دارند در حالی که در واکنش PCR تنها نوع خاصی آنزیم DNA پلیمراز مقاوم به حرارت به نام Taq polymerase به همراه بافر، کلرید منیزیم و نوکلئوتیدها جهت تکثیر قطعات DNA استفاده می شود. مخترع واکنش PCR کَری مولیس (Kary Mullis) می باشد که در سال ۱۹۸۳ این روش را جهت تکثیر DNA معرفی کرد. قبل از این کشف، ساخت قطعات DNA با روش های کند و پر هزینه شیمیایی انجام می گرفت. به دلیل اهمیت این اختراع، کاربردهای فراوان و نقش ارزنده آن در پیشرفت علم ژنتیک و زیست شناسی مولکولی، وی جایزه نوبل شیمی را در سال ۱۹۹۳ دریافت کرد. واکنش PCR به طور روزمره در اکثر آزمایشگاه های تشخیصی و تحقیقاتی استفاده می شود و در موارد بسیاری مثل شناسایی و جداسازی ژن ها، کلونینگ، طبقه بندی و شناسایی موجودات زنده، تشخیص بیماری های ژنتیکی و حتی پرونده های جنایی و تعیین هویت کاربرد دارد. در حال حاضر و نزدیک به ۳۰ سال پس از کشف PCR، تحقیقات ژنتیک مولکولی بدون استفاده از این تکنیک قابل تصور نیست. سازوکار (برنامه) واکنش PCR اساس واکنش PCR جهت تکثیر توالی DNA دو رشته ای، تغییرات دمایی می باشد. در ابتدا پیوندهای هیدروژنی دو رشته توالی DNA با حرارت (۹۴-۹۵ درجه سلسیوس) شکسته و دو رشته از یکدیگر جدا می شوند. سپس دمای واکنش پایین آورده می شود (معمولاً ۵۰ تا ۶۰ درجه سلسیوس). در این مرحله، دو قطعه کوتاه DNA تک رشته ای (معمولاً بین ۱۸ تا ۳۰ نوکلئوتید) که دقیقاً مشابه دو طرف قطعه DNA مورد نظر برای تکثیر طراحی و ساخته شده اند (با نام پرایمر یا آغازگر)، به توالی های مکمل خود در دو رشته باز شده DNA متصل می گردند. این دو قطعه انتهای ۳’ آزاد جهت فعالیت آنزیم DNA پلیمراز را فراهم می نماید، کاری که در همانند سازی در موجودات زنده توسط آنزیم پریماز و توالی اولیه ساخته شده توسط آن انجام می گیرد. در مرحله بعد، دمای واکنش تا ۷۲ درجه سلسیوس (دمای مناسب آنزیم Taq polymerase) افزایش یافته و عمل تکثیر قطعه DNA مورد نظر بین دو پرایمر با استفاده از نوکلئوتیدهای موجود، توسط آنزیم Taq polymerase مقاوم به حرارت انجام می پذیرد. این ۳ مرحله بین ۲۵ تا ۴۰ بار تکرار می شود که به آن چرخه های PCR می گویند. مرحله اول: واسرشت سازی (Denaturation)، ۳۰ تا ۶۰ ثانیه عمل انجام شده در این مرحله: جدا شدن دو رشته DNA مرحله دوم: اتصال (Annealing)، ۳۰ تا ۶۰ ثانیه عمل انجام شده در این مرحله: اتصال پرایمرها به نواحی مکمل روی DNA و تعیین محدوده تکثیر قطعه DNA مرحله سوم: گسترش (Extension یا Elongation)، به ازای هر ۱۰۰۰ نوکلئوتید طول قطعه ۶۰ ثانیه عمل انجام شده در این مرحله: تکثیر قطعه DNA مورد نظر اجزا واکنش PCR در یک واکنش PCR از نمونه DNA، آنزیم Taq polymerase، پرایمرها، بافر، یون منیزیم، نوکلئوتیدها و آب حضور استفاده می شود. توضیحات مربوط به هر یک از این اجزا در ادامه ارائه شده است: - نمونه DNA (الگو) تکثیر از روی نمونه DNA انجام می شود. این نمونه می تواند، قطعه ای DNA، محصول استخراج DNA ژنومی، DNA پلاسمیدی یا حتی محصول PCR دیگری باشد. معمولاً حدود یک نانوگرم از DNA پلاسمیدی یا فاژی یا یک میکروگرم از DNA ژنومی برای یک واکنش PCR کافی است. بیش از این مقدار، باعث تولید محصولات غیر اختصاصی (قطعات DNA دیگری غیر از قطعه مورد نظر) شده و مقدار کم نمونه DNA نیز باعث کاهش دقت واکنش PCR یا عدم تکثیر قطعه مورد نظر می گردد. کیفیت نمونه DNA نیز مهم است به طوری که باقی ماندن ترکیبات مورد استفاده در مرحله استخراج DNA مثل فنل و EDTA، باعث کاهش فعالیت آنزیم Taq polymerase و عدم حصول نتیجه مورد نظر می گردد. همچنین آلوده شدن واکنش PCR با مقادیر بسیار اندک DNA از هر منبع دیگری، به دلیل حساسیت فوق العاده این تکنیک، ممکن است به تولید قطعات غیر قابل انتظار بیانجامد. - آنزیم Taq polymerase این آنزیم برای تکثیر قطعات کمتر از سه هزار جفت باز توصیه شده و پر مصرف ترین آنزیم مورد استفاده در PCR می باشد. به طور معمول حدود یک واحد از این آنزیم در ۵۰ میکرو لیتر از واکنش PCR استفاده می شود. اگر نمونه DNA حاوی مواد ممانعت کننده PCR باشد، می توان این مقدار را دو تا سه برابر افزایش داد ولی مقادیر بالاتر آنزیم باعث تولید محصولات غیر اختصاصی می گردد. گرچه دمای مناسب برای این آنزیم ۷۲ درجه سلسیوس می باشد ولی چون این آنزیم در دمای معمولی نیز قادر به تکثیر می باشد برای جلوگیری از اتصال قطعات پرایمر به نقاط دیگری روی توالی نمونه DNA و امکان تولید قطعات غیر اختصاصی، توصیه می شود که تمامی مراحل آماده سازی واکنش PCR بر روی یخ صورت گیرد. - نوکلئوتید ها چهار نوکلئوتید تشکیل دهنده قطعه DNA از اجزا واکنش PCR می باشند که به عنوان واحد های ساختمانی مورد نیاز در ساخت قطعه DNA استفاده می شوند. غلظت مورد نیاز از هر یک از نوکلئوتیدها برای واکنش PCR یکسان و برابر ۲۰۰ نانو مولار می باشد. برای این منظور از مخلوط های آماده واجد هر چهار نوکلئوتید که با غلظت های مختلف مثل دو میلی مولار، ۱۰ میلی مولار و ۲۵ میلی مولار موجود است، استفاده می شود. به طور مثال، در یک واکنش ۵۰ میکرو لیتری PCR باید ۵ میکرو لیتر از مخلوط دو میلی مولار نوکلئوتیدها برای دستیابی به مقدار مورد نیاز در واکنش استفاده کرد. - بافر مهمترین نقش بافر PCR تنظیم pH مناسب واکنش PCR و آنزیم Taq polymerase می باشد. اجزای این بافر نقش های دیگری نیز دارند از جمله کلرید پتاسیم که به اتصال پرایمر به DNA الگو (نمونه) کمک می کند. - یون منیزیم یون منیزیم یکی از اساسی ترین اجزا واکنش PCR می باشد. انواع مختلف آنزیم DNA polymerase برای فعالیت خود به این یون نیاز دارند و این یون برای اتصال پرایمر و قطعه DNA لازم است. برای تکثیر با Taq polymerase این یون عمدتاً به صورت ترکیب کلرید منیزیم در واکنش PCR استفاده می شود. این ترکیب گاهی در همان بافر PCR قرار داده می شود ولی از آنجا که برای برخی واکنش های PCR لازم است که غلظت این یون تغییر نماید، این ترکیب به طور جداگانه تهیه و به واکنش PCR افزوده می شود. غلظت بهینه یون منیزیم در واکنش PCR یک تا چهار میلی مولار است. غلظت بالاتر از این مقدار باعث تکثیر قطعاتی غیر از قطعه مورد نظر (قطعات غیر اختصاصی) شده و غلظت پایین این یون نیز ممکن است به کاهش کارایی واکنش و میزان تولید قطعه مورد نظر منجر شود. - پرایمرها غلظت بهینه پرایمرها برای واکنش PCR از ۱۰۰ نانو مولار تا یک میکرو مولار متغییر است. غلظت بیش از این، منجر به تولید قطعات غیر اختصاصی می شود. طراحی پرایمر نیازمند دقت فراوانی است و مرحله بسیار مهمی در امکان پذیر شدن و صحت تکثیر قطعه مورد نظر دارد. دمای مرحله اتصال در برنامه PCR به توالی پرایمرها ارتباط دارد. وسایل مورد نیاز برای واکنش PCR حداقل وسایل مورد نیاز برای انجام واکنش PCR، دستگاه ترموسایکلر (ایجاد کننده چرخه های دمایی)، میکرو پیپت، ظرف یخ و وسایل یکبار مصرفی مانند تیپ (جز پلاستیکی که برای کشیدن محلول به میکرو پیپت متصل می شود) و ویال (لوله های درب دار کوچک، در دو اندازه بر اساس گنجایش آنها یعنی ۲۰۰ و ۵۰۰ میکرو لیتر، که واکنش PCR در آنها انجام می شود) و ظروف نگهداری آنها می باشد. دستگاه ترموسایکلر برای ایجاد دماهای مختلف در مدت زمان مورد نظر، قابل برنامه ریزی می باشد. قبل از تولید این دستگاه، دانشمندان برای انجام PCR از سه حمام آب گرم با دماهای مختلف استفاده می کردند که کار بسیار پر زحمتی بود. میکرو پیپت برای برداشتن مقادیر اندک مورد نیاز برای واکنش PCR در مقیاس میکرو لیتر استفاده می شود. بر روی این دستگاه که کار کردن با آن بسیار راحت است، تیپ های یک بار مصرف قرار داده می شود و بدین وسیله حجم مورد نظر از آن برداشته و به واکنش PCR افزوده می شود. نوشته: کسری اصفهانی سرویس خبری بیوتکنولوژی ایران


نوشته شده در تاريخ دو شنبه 27 آذر 1391برچسب:, توسط aryan

 

میکروب ها باهوش هستند

                                 

بسیاری از باکتری ها و آغازیان رفتارهای هوشمندانه و قابل ملاحظه ای از خود نشان می دهند. این رفتارهای هوشمندانه، از آن نوع که در انسان و یا سایر موجودات پیچیده می بینیم، نمی باشد چرا که موجودات تک سلولی نه تنها مغز، بلکه سیستم عصبی هم ندارند. به عبارت دیگر آنها کامپیوترهای زیستی هستند که می تواند اطلاعات را پردازش کند. در این مطلب به چندین مثال برجسته از این رفتارهای هوشمند اشاره می کنیم. بخش اعظم گونه های موجود بر روی زمین تک سلولی هستند. بسیاری از این موجودات تک سلولی تا کنون شناخته نشده اند و بسیاری از آنهایی هم که شناسایی شده اند، نام گذاری نشده اند. اما بخش کوچکی از گونه های تک سلولی که تا به حال مورد مطالعه قرار گرفته اند، توانایی های قابل ملاحظه ای از خود نشان داده اند. بسیاری از این توانایی ها فیزیکی هستند؛ به طور مثال، برخی از آنها می توانند برای صدها هزار سال غیر فعال باشند و یا در محیطی رشد کنند که سایر میکروارگانیسم ها بلافاصله در آن از بین می روند. بسیاری از باکتری ها و آغازیان رفتارهای هوشمندانه و قابل ملاحظه ای از خود نشان می دهند و به نظر می آید آنها کامپیوترهای زیستی هستند که می تواند اطلاعات را پردازش کند. در اینجا به چندین مثال برجسته از این رفتارهای هوشمند اشاره می کنیم. ارتباطات باکتری ها بوسیله مواد شیمیایی با یکدیگر ارتباط برقرار می کنند. آنها این کار را به دلایل مختلفی انجام می دهند که درک آن مشکل است. یکی از ساده ترین این باکتری ها باسیلوس سوبتیلیس می باشد. اگر باسیلوس سوبتیلیس در محیط فقیر مواد غذایی رشد کند، ماده شیمیایی خاصی به اطراف خود ترشح می کند. این ماده به باکتری های اطراف می گوید “غذای کافی اینجا وجود ندارد، از اینجا بروید وگرنه هردو از گرسنگی خواهیم مرد”. در جواب به پیغام این مواد شیمیایی، سایر باکتری ها با فاصله از یکدیگر قرار گرفته و شکل کلنی ها کاملا تغییر می کند. تصمیم گیری بسیاری از موجودات تک سلولی، قادر به شناسایی تعداد باکتری های هم گونه خود که در نزدیکی آنها قرار دارند هستند. این توانایی به “حس حد نصاب” (quorum sensing) معروف است. هر باکتری مقدار کمی از یک ماده شیمیایی را به محیط اطرافش ترشح می کند که می تواند توسط گیرنده¬های موجود در دیواره سلولی آنها تشخیص داده شود. اگر تعداد زیادی باکتری در محیط باشد، تمام باکتری ها یک نوع ماده شیمیایی ترشح کرده و میزان این ماده شیمیایی به نقطه بحرانی رسیده و سبب تغییر در رفتار باکتری ها می شود. باکتری های بیماری زا اغلب با استفاده از این حس، تصمیم می گیرند چه زمانی به میزبان خود حمله کنند. زمانی که به تعداد کافی برای فشار به سیستم ایمنی تکثیر شدند، به صورت دسته جمعی حمله به موجود میزبان را آغاز می کنند. بنابراین، به نظر می آید با جلوگیری از انتقال علائم بین این باکتری ها می توان راهی را برای مقابله با آنها پیدا کرد. شهر نشینی (تشکیل جوامع باکتریایی) باکتری ها نه تنها می توانند با یکدیگر ارتباط برقرار کنند و با هم همکاری داشته باشند بلکه می توانند تشکیل جوامعی را بدهند. نتیجه این کار، بیوفیلم یا همان لایه های نازک لعابی شکل داخل لوله های آب، یا سطوح آشپزخانه در خانه های دانشجویی(!) می باشد. آنها همچنین در پناهگاه های زیستی مانند لایه داخلی دستگاه گوارش انسان و یا هرجایی که آب وجود داشته باشد یافت می شوند. بسیاری از گونه ها در کنار یکدیگر در “شهرهای باکتریایی” از مواد زائد یکدیگر استفاده می کنند و از منابع غذایی با همکاری یکدیگر بهره برداری کرده و از یکدیگر در مقابل خطرات خارجی مانند آنتی بیوتیک ها محافظت می نمایند. تسریع در جهش زایی بسیاری از میکروب ها قادر به سرعت بخشیدن به میزان جهش در ژن های خود هستند. این امر به آنها توانایی های جدیدی می بخشد که می تواند برای شرایط سخت مفید باشد. این امر از آنجایی که بسیاری از جهش ها مضر و حتی کشنده می باشند، برای باکتری خطرساز است و به عنوان آخرین راه حل و زمانی که چیز زیادی برای از دست دادن باقی نمانده است، استفاده می شود. مثال های زیادی در این زمینه وجود دارند: اشریشیا کلی بسیار سریع تر در شرایط استرس جهش می یابد و نشان داده شده است که مخمر هم از همین ترفند استفاده می کند. در اوایل دهه ۹۰ میلادی، محققین پیشنهاد دادند که باکتری ها ممکن است راه خاصی برای انتخاب جهش ها داشته باشند. در این زمینه ایده جهش مستقیم (directed mutation) بسیار بحث برانگیز بود. جهت یابی بسیاری از جانوران می توانند از فواصل زیادی راه خود را پیدا کنند. پرنده هایی که کوچ می کنند و زنبور عسل بهترین مثال ها برای این پدیده هستند. میکروب ها نیز در این زمینه تبحر دارند. جلبک های تک سلولی که به شکل دسته جمعی کلامیدوموناس نام دارند، به سمت نور شنا می کنند البته فقط زمانی که آن نور در طول موجی باشد که آنها برای فتوسنتز از آن استفاده می کنند. مشابه جلبک های تک سلولی، بعضی از باکتری ها به سمت مواد شیمیایی که در محیطشان وجود دارد، حرکت می کنند که به این رفتار کموتاکسیس می گویند. برای مثال اشریشیا کلی همانند کوسه ای که رد خون را می گیرد، اگر حتی مولکول های اندکی از غذا وارد محیط اطرافش شود، به سمت آن حرکت می کند. گروه دیگری از باکتری ها به طرف نیروی مغناطیسی زمین به گونه ای صف می شوند که قادر به حرکت مستقیم به سمت شمال یا جنوب شوند. این باکتری ها که معروف به باکتری های مغناطیسی هستند، این توانایی ویژه را از اندامک های پوشیده شده از کریستال های مغناطیسی خود کسب نموده اند. اما شاید بهترین مثال از جهت یابی میکروب ها، کپک پلی سفالوم (Physarum polycephalum) باشد. کلنی های شبه آمیب این موجود، همیشه کوتاهترین راه را در یک مسیر پیچیده انتخاب می کنند. یادگیری و حافظه وقتی آمیب Dictyostelium سطحی را برای غذا جستجو می کند، گاهی تغییر مسیر داده و بر می گردد ولی این تغییر مسیرهایش تصادفی نمی باشد. این موجود با تغییر جهت های هدفمند، آخرین چرخش خود در مسیر را به خاطر می سپارد. اسپرم انسان نیز دارای چنین توانایی می باشد. اشریشیا کلی حتی بهتر از این عمل می کند. این باکتری بخشی از چرخه زندگی خودش را صرف گشت و گذار در دستگاه گوارش و روبرو شدن با محیط های مختلف می کند. در طی این مدت، با قند لاکتوز قبل از یافتن قند مرتبط با آن یعنی مالتوز مواجه می شود. در مواجهه با لاکتوز، سازوکار بیوشمیایی تجزیه این قند فعال می شود اما در همین حال، سیستم تجزیه مالتوز نیز تا حدودی فعال می شود تا برای مرحله بعد که برخورد با مالتوز می باشد، آماده باشد. اما در تحقیقات دانشمندان اسرائیلی، پژوهشگران این باکتری را برای چندین ماه در محیط کشت واجد لاکتوز و بدون مالتوز، رشد دادند. آنها متوجه شدند که این باکتری به تدریج رفتارش را تغییر داده و تمایلی به فعال کردن سیستم تجزیه مالتوز نشان نمی دهد. ترجمه: سمانه مفاخری ویرایش: کسری اصفهانی منبع: نیوساینتیست

 

 


نوشته شده در تاريخ دو شنبه 27 آذر 1391برچسب:, توسط aryan

 

الکتروفورز(electrophoresis)

 

به حرکت ذرات در یک مایع تحت میدان الکتریکی گویند.

دستگاه الکتروفورز

به سبب اینکه ماکرومولکول های زیستی مانند DNA و پروتئین باردار هستند می توان با قرار دادن آنها در یک میدان الکتریکی آنها را بر اساس خواص فیزیکی مانند شکل فضایی ,وزن مولکولی و بار الکتریکی تفکیک کرد.برای این منظور از روشی به نام الکتروفورز استفاده می شود.روش های مختلف الکتروفورزی برای تفکیک و مطالعه بیومولکول ها اعم از اسید نوکلئیک یا پروتئین ها ابداع شده است.الکتروفورز ژل از یک محیط نیمه جامد (ژل) به عنوان فاز ثابت استفاده میشود

این نوع الکتروفورز بر حسب نوع ژل به کار گرفته شده به دو نوع الکتروفورز ژل پلی اکریل آمید (PAGE) و الکتروفورز ژل آگارز تقسیم میشود.الکتروفورز PAGE دارای قدرت تفکیک بسیار بالایی بوده و برای تفکیک پروتئین ها و اسیدهای نوکلئیک به کار گرفته می شود. به منظور بررسی پروتئین ها با استفاده از PAGE به سبب اینکه پروتئین ها دارای بار مختلف هستند,معمولا برای اینکه تفکیک فقط بر اساس وزن مولکولی انجام شود به بافر ماده ی شیمیایی SDS (سدیم دو دسیل سولفات) اضافه می شود. SDS مولکول بزرگی با بار منفی است این ماده باعث واسرشت شدن پروتئین ها شده و به آنها متصل می شود. به ازای هر دو اسید آمینه یک مولکول SDS  به پروتئین متصل می شودکه باعث القا بار منفی متناسب با وزن مولکولی به پروتئین می شود.هرچه غلظت پلی اکریل آمید بیشتر باشد قدرت تفکیک ژل بیشتر خواهد بود و مولکول های دارای وزن مولکولی نزدیک به هم را بهتر تفکیک می نماید. با توجه به اندازه مولکول پروتئین غلظت ژل متفاوت است.

برای تفکیک اسید های نوکلئیک در صورت امکان از ژل آگارز استفاده می شود. تهیه ژل مزبور به مراتب سریع تر و آسانتر از ژل پلی اکریل آمید بوده و هزینه کمتری را در بر میگیرد. معمولا برای تفکیک  قطعات بزرگ DNA (بزرگ تر از ۵۰۰ جفت باز) در صورتیکه هدف صرفا بررسی کیفی و تفکیک باشد استفاده از ژل آگارز انتخاب اول است.برای تفکیک قطعات کوچک DNA  دو رشته ای و قطعات DNA تک رشته ای از ژل پلی اکریل آمید استفاده می شود.قدرت تفکیک ژل های مزبور ارتباط مستقیمی با غلظت آنها دارد. برای مثال برای تفکیک قطعاتی به اندازه ۱۰۰ جفت باز از آگارز ۳% و برای قطعات حدود ۲۰۰۰ جفت باز از آگارز ۸/۰% استفاده می شود. در صورتیکه نیاز به تفکیک DNA به صورت تک رشته ای باشد از مواد واسرشت کننده نظیر اوره , فرمالدهید یا فرمامید در ژل هم زمان با الکتروفورز استفاده می شود. به این نوع  ژل ها ژل واسرشت کننده می گویند. چنین ژل هایی پیچ و تاب های اسید نوکلئیک را از هم باز کرده و بنابراین تفکیک مولکول ها فقط بر اساس طول و نه ساختار دوم انجام می شود. در این ژل ها مولکول های کوچک تر در مقایسه با مولکول های بزرگ تر سریع تر حرکت کرده و مسافت بیشتری را طی می کنند. از روش PAGE برای بررسی جهش ها و تعیین توالی DNA استفاده می شود.

 


نوشته شده در تاريخ دو شنبه 27 آذر 1391برچسب:, توسط aryan

 

رنگ آمیزی و ازمون گرم

 

 

معروفترین نوع رنگ آمیزی مرکب نوع گرم می باشد . این روش مفیدترین روش تشخیص باکتریها می باشد.

میکروبشناسی بنام کریستیان گرم در سال ۱۸۸۴ بطور تصادفی واکنشی را کشف کرد که بعدها واکنش رنگ آمیزی گرم نامیده شد.

 

بر این اساس باکتریها با توجه با ساختمان دیواره یاخته ای (سلولی) به دو بخش بزرگ و کلی تقسیم می شوند: باکتریهای گرم مثبت و گرم منفی . تفاوت عمده بین این دو گروه تفاوتهای ساختاری(ساختمانی) بین این دو گونه می باشد به این ترتیب که در گونه گرم مثبتها در دیواره سلولی نوعی پلی ساکارید بکار رفته و دیواره سلولی آن کمی ضخیمتر می باشد در صورتیکه در دیواره سلولی نوع گرم منفی مقدار چربی بیشتری بکار رفته و دیواره سلولی آن کمی نازکتر از نوع گرم منفی می باشد.

بر همین اساس در رنگ آمیزی گرم با توجه به این تفاوت مهم در دیواره سلولی ، از دو نوع رنگ استفاده می شود ، رنگ اولیه کریستال ویوله می باشد . هنگامیکه محلول کریستال ویوله به گسترش باکتریایی اضافه می شود این رنگ با ریبونوکلئات موجود در دیواره سلولی ترکیب شده و کمپلکس کریستال ویوله – ریبونوکلئات را بوجود می آورد و بعد از شستشوی رنگ اضافی ، محلول ید را بکار می برند . این محلول ید که ترکیبی فلزی می باشد به رنگ متصل شده و یک ترکیب رنگی غیر محلول ایجاد می کند بنام کمپلکس کریستال ویوله –ید که در سر دیگر آن متصل شده به ریبونوکلئات موجود در دیواره سلولی و تشکیل کریستال ویوله – ید – ریبونوکلئات داده است در حالیکه در باکتریهای گرم منفی چنین کمپلکسی ایجاد نمی شود. این پیوند در باکتریهای گرم مثبت بسیار پایدار است و در مرجله بعدی توسط ماده رنگ بر شکسته نمی شود و رنگ بنفش کریستال ویوله را در خود حفظ کرده بنابراین باکتریهای گرم مثبت زیر میکروسکوپ بنفش رنگ دیده می شوند.

از طرفی در دیواره سلولی باکتریهای گرم منفی مقدار چربی بیشتری بکار رفته است بنابراین چربیها در الکل استن که در مرحله بعدی بعنوان رنگ بر بکار می روند ، محلول هستند و در اثر این واکنش چربیها از دیواره سلولی خارج شده و در اثر شستشو با حلال رنگ بر ، رنگ کریستال ویوله هم از سطح باکتری خارج می شود . با خروج چربی توسط ماده رنگ بر ، بر اندازه منافذ دیواره سلولی افزوده شده که این امر باعث بی رنگ شدن سریع باکتریهای گرم منفی می شود .در این مرحله باکتریهای گرم منفی از کریستال ویوله پاک می شوند . بنابراین بعد از شستشو توسط آب و افزوده شدن رنگ دوم یعنی سافرانین (فوشین) ، این رنگ به دیواره سلولی باکتریهای گرم منفی جذب شده و باکتریها به رنگ قرمز در می آیند و در بررسی میکروسکوپی ، باکتریهای گرم منفی برنگ قرمز دیده می شوند.

اکثر باکتریهای موجود ، گرم منفی هستند البته بعضی از باکتریها ، مخمرها و تعدادی از کپکها گرم مثبت هستند.

بنابراین مراحل رنگ آمیزی گرم را می توان به شرح زیر بیان نمود:

۱-        تهیه گسترش روی لام : ابتدا از نمونه باکتری  یک گسترش روی لام تهیه می کنید.

۲-        رنگ آمیزی با کریستال ویوله : در این مرحله مقداری از رنگ کریستال ویوله را با قطره چکان به روی سطح گسترش میکروبی روی لام بریزید و بگذارید ۱ دقیقه بماند تا رنگ در دیواره سلولی میکروبها نفوذ کند.

۳-        مرحله شستشو: پس از سپری شدن مدت زمان ۱ دقیقه ، رنگ اضافی روی لام را خالی کرده و با استفاده از آب مقطر سطح روی گسترش را شستشو دهید.

۴-        مرحله اضافه کردن محلول ید : جند قطره از محلول ید را روی گسترش پخش نموده و بگذارید بمدت ۱ دقیقه به همان حالت بماند . بعد محلول اضافی را خالی کرده و با آب مقطر لام را شستشو دهید.

۵-        مرحله رنگ بری با استفاده از استن – الکل : لام را با زاویه ۴۵ درجه نگهدارید بعد با استفاده از محلول رنگ بر الکل – استن که بر روی گستره می ریزید بسرعت آنرا بی رنگ کنید. دقت کنید مرحله بی رنگ سازی بیش از اندازه نباشد. بعد از آن لام را بسرعت بشوئید . این عمل ، بی رنگ شده را متوقف خواهد کرد.

۶-        رنگ آمیزی با سافرانین : در این مرحله سطح گسترش را با رنگ ثانویه یعنی سافرانین بپوشانید و ۳۰ تا ۶۰ ثانیه صبر کنید . بعد از آن رنگ اضافی را خالی کرده و با آب مقطر لام را شستشو دهید.

۷-        لام رنگ آمیزی شده را آهسته روی کاغذ خشک کن قرار دهید ولی کاغذ را روی گسترش نکشید.

نکات مهم :

۱-        حرارت بیش از اندازه هنگام تثبیت گسترش باعث پاره شدن دیواره سلولی باکتری شده . بنابراین باکتری گرم مثبت رنگ اولیه (کریستال ویوله) را هنگام رنگ بری از دست می دهد و رنگ ثانویه را جذب می نماید و در نتیجه باکتری گرم مثبت ، بصورت گرم منفی دیده می شود.

۲-        اگر گسترش ضخیم باشد هنگام مرحله بی رنگ شدن ، ممکن است مانند یم گسترش معمولی رنگ نشود و این مسئله باعث خطا در تشخیص شما در گرم منفی یا مثبت بودن باکتری خواهد شد.

۳-        غلظت درست و تازه بودن رنگها هم در رنگ آمیزی موثر است .

۴-        رنگ بری بیش از حد ممکن است باعت پاره شدن جدار باکتریهای گرم مثبت شده در نتیجه این باکتریها رنگ کریستال ویوله خود را از دست داده و رنگ ثانویه را جذب می نماید و بصورت گرم منفی دیده می شود.

۵-        دقت شود هنگام تهیه گسترش روی لام از محیط کشت ، سن کشت باکتری باید ۲۴ ساعت یا کمتر باشد . بنابراین در محیط کشتهایی که از عمر آنها گذشته و کهنه شده اند ، در قابلیت نفوذ دیواره سلولی باکتریها تغییراتی حاصل می شود که خاصیت گرم مثبت بودن را از دست می دهد.

در رنگ آمیزی گرم مثبت باکتریها را به ۵ گروه تقسیم بندی می کنند:

۱-        میله ای (باسیل ) گرم مثبت ۲- میله ای گرم منفی ۳- کوکوس (گرد) گرم مثبت ۴- کوکوس گرم منفی ۵- باکتریهای بدون واکنش به رنگ آمیزی گرم.

در این رنگ آمیزی می توان هر باکتری ناشناخته ای را در یکی از این ۵ گروه قرار داده و با اطمینان ۴ گروه دیگر را حذف کرد و به مطالعه در مورد آن باکتری پرداخت .

خصوصیات باکتریهای گرم مثبت و گرم منفی :

۱-        باکتریهای گرم مثبت نسبت به پنی سیلین و مواد ضد باکتریایی حساستر از گرم منفی ها هستند.

۲-        گرم مثبت بودن یک باکتری خصوصیتی است که براحتی از بین می رود اما گرم منفی بودن تحت هیچ شرایطی از بین نمی رود . پس هنگام تشخیص و رنگ آمیزی باید به این نکته هم توجه داشت . یعنی در لامهای رنگ آمیزی شده گرم متبت ، باکتریهای گرم منفی هم دیده می شود اما در لامهای گرم منفی از یک کشت خالص هرگز باکتریهای گرم مثبت دیده نمی شوند.

۳-        باکتریهای گرم منفی سخت رشد ترند یعنی نیاز غذایی آنها پیچیده تر است .

۴-        باکتریهای گرم منفی نسبت به مواد اسیدی و قلیایی قوی و آنزیم لیزوزیم حساسترند. همه اینها موجب پاره شدن دیواره سلولی این باکتری و هضم و متلاشی شده آن می شوند.

طرز تهیه رنگها و محلولهای گرم :

۱-        کریستال ویوله :

- کریستال ویوله                        ۲ گرم

- اتانول ۹۵%                         ۲۰سی سی

- اگزالات آمونیوم(خالص)           ۸/.گرم

- آب مقطر                             ۸۰سی سی

کریستال ویوله را در اتانول حل کنید. اگزالات آمونیوم را در آب حل کنیدو سپس دو محلول را روی هم ریخته و بخوبی مخلوط کنید.

۲-        محلول ید:

- ید                                       ۱ گرم

- یدور پتاسیم                           ۲ گرم

- آب مقطر                             ۳۰۰ سی سی

ید و یدور پتاسیم را با هم در هاون بسائید تا کاملا نرم شود . مقدار کمی آب اضافه کنید تا محتویات هاون شسته شود. بقیه آب را هم اضافه کرده و کاملا مخلوط کنید . این محلول را باید در شیشه تیره رنگ نگداری کنید.

۳-        محلول سافرانین :

- سافرانین                              ۲۵ گرم

- اتانول ۹۵%                         ۱۰سی سی

- آب مقطر                             ۱۰۰سی سی

سافرانین را در اتانول حل کنید . آب مقطر را اضافه کرده و خوب مخلوط کنید . محلول را از کاغذ صافی عبور دهید.

۴-        محلول استن – الکل :

- اتانول ۹۵%                        ۷۰ سی سی

- استن                                  ۳۰سی سی

دو محلول را کاملا با هم مخلوط کنید.

 

آزمون حلالیت در پتاس:

ابتدا یک قطره از محلول پتاس ۳% روی یک لام تمیز ریختیم.سپس توسط یک چوب کبریت مقداری از کشت تازه ی باکتری را برداشته و در محلول پتاس (KOH) به طور دورانی حرکت دادیم.و چوب کبریت را پس از ۱۵-۱۰ ثانیه از روی لام بالا کشیدیم.باکتری های گرم منفی در اثر تخریب دیواره و بیرون ریختن DNA و سایر مواد داخل سلول یک حالت چسبندگی و کشسانی نشان می دهند ، در صورتی که در مورد باکتری های گرم مثبت اینچنین نیست.باید در مورد زمان به هم زدن باکتری ها در KOH دقت کنیم زیرا باکتری های گرم مثبت هم اگر زیاد در پتاس بمانند دیواره ی سلولیشان تخریب شده و همان حالت کشسانی را از خود نشان می دهند.

 


نوشته شده در تاريخ دو شنبه 27 آذر 1391برچسب:, توسط aryan

 

اندازه گیری نقطه جوش

تعریف نقطه جوش:نقطه جوش دمایی است که در آن دما, فشار بخار جسم مایع با فشار اتمسفر برابر می شود.

نقطه جوش به عوامل زیر بستگی دارد:

۱_ فشار: بین نقطه جوش وفشار ارتباط مستقیم وجود دارد . اگر به تعریف نقطه جوش دقت شود فشار سیستم بالا رود نقطه جوش نیز بالا می رود و بالعکس.

تاثیر فشار بر نقطه جوش:

نقطه جوش یک مایع با تغییر فشار خارجی تغییر می‌کند. نقطه جوش نرمال یک مایع ، دمایی است که در آن فشار بخار مایع برابر با یک اتمسفر باشد . نقطه جوش داده شده در کتابهای مرجع ، نقاط جوش نرمال می‌باشند . نقطه جوش یک مایع را می‌توان از منحنی فشار بخار آن بدست آورد و آن دمایی است که در آن فشار بخار مایع با فشار وارد بر سطح آن برابری می‌کند.

نوسانات فشار جو در یک موقعیت جغرافیایی ، نقطه جوش آب را حداکثر تا Cْ ۲ تغییر می‌دهد . ولی تغییر محل ممکن است باعث تغییرات بیشتر شود ، متوسط فشاری که هواسنج در سطح دریا نشان می‌دهد یک اتمسفر ، ولی در ارتفاعات بالاتر کمتر از این مقدار است. مثلا در ارتفاع ۵۰۰۰ پایی از سطح دریا متوسط فشاری که فشارسنج نشان می‌دهد atm 0.836 است و نقطه جوش آب در این فشار Cْ ۹۵٫۱ می‌باشد.

مولکولها در فاز گازی به سرعت حرکت میکنند و دائما به دیواره ظرف بر می خورند و منجر به وارد کردن فشار به دیواره آن می شوند میزان این فشار در یک درجه حرارت معین را فشار بخار تعادل جسم مایع در آن درجه می نامند . این فشار بخار به درجه حرارت بستگی دارد . این بستگی به آسانی با تمایل گریز مولکولها از مایع قابل توجیه است. با ازدیاد درجه حرارت انرژی جنبشی متوسط مولکولها افزایش می یابد و فرار آنها به فاز گازی آسان میشود . سرعت ورود مجدد مولکولها نیز رو به افزایش می رود و به زودی در درجه حرارت بالاتر تعادل برقرار می شود. ولی در این حال تعداد مولکولها در فاز گازی از تعداد آنها در درجه حرارت پایین تر بیشتر است و در نتیجه فشار بخار زیادتر است .

 اکنون نمونه مایعی را در نظر بگیرید که در یک درجه حرارت معین در ظرف سر گشاده ای قرار دارد و مولکولهای فاز بخار در بالای مایع می توانند از محوطه ظرف خارج شوند . بخاری که در بالای این نمونه است از مولکولهای هوا و نمونه تشکیل شده است . طبق قانون فشارهای جزئی دالتون ، فشار کل (خارجی) در بالای مایع برابر با فشارهای جزئی نمونه و هوا است :

             هواP + نمونهP = کلP

فشار جزئی نمونه برابر با فشار بخار تعادل آن در درجه حرارت معین است. اگر درجه حرارت بالا رود (بدین ترتیب فشار بخار تعادل نمونه زیاد میشود) تعداد مولکولهای نمونه در فضایی که در بالا و نزدیک مایع است افزایش می یابد و در نتیجه مقداری از هوا جابجا میشود . در درجه حرارت بالا فشار جزئی نمونه درصد بیشتری از فشار کل را تشکیل میدهد . با ازدیاد بیشتر درجه حرارت این عمل ادامه می یابد تا فشار بخار تعادل با فشار خارجی برابر شود و در این حال تمام هوا کاملا از ظرف خارج میشود . تبخیر بیشتر باعث جابجا شدن مولکولهای گازی نمونه خواهد شد . با توجه به این حقایق به این نتیجه میرسیم که فشار بخار تعادل یک نمونه یک حد نهایی دارد که به وسیله فشار خارجی معین میشود . در این حد سرعت تبخیر به مقدار زیادی افزایش می یابد (که با تشکیل حباب در مایع آشکار میشود) و این مرحله را عموما شروع جوشش می دانند. نقطه جوش یک مایع درجه حرارتی است که در آن فشار بخار مایع کاملا برابر با فشار خارجی شود. چون نقطه جوش مشاهده شده مستقیما به فشار خارجی بستگی دارد، از این جهت باید در گزارش نقطه جوش، فشار خارجی هم قید شود (مثلا نقطه جوش ۱۵۲ درجه سانتیگراد در فشار ۷۵۲ میلی متر جیوه). معمولا نقطه جوش استاندارد را در فشار آتمسفر (۷۶۰ mm Hg) تعیین میکنند .

نقاط جوش برای شناسایی مایعات و برخی از جامداتی که در حرارت پایین ذوب میشوند، مفید هستند. جامداتی که در حرارت بالا ذوب میشوند معمولا آنقدر دیر میجوشند که نمیتوان به راحتی درجه جوش آنها را اندازه گرفت .

۲_ ساختمان ترکیب: هر چقدر ساختمان ترکیب قطبی تر باشد نقطه جوش هم بیشتر می شود .اگر ترکیبی توانایی تشکیل پیوند هیدروژنی را داشته باشد نقطه جوش آن بالاتر می رود . ملاحظه می شود که در دو ترکیب H2S  و H2O اتم های مرکزی هم گروه می باشند ولی چون مولکول های آب توانایی تشکیل پیوند هیدروژنی دارد نقه جوش آن بالا تر خواهد بود.

هرچقدر ترکیبی دارای شاخه های جانبی کمتری باشد نقطه جوش آن بیشتر خواهد بود

۳_ ناخالصی ها: ناخالصی ها دو نوع اند:

الف)غیر فرار : مثل ترکیبات معدنی مانند Mgcl2 , Nacl که باعث افزایش نقطه جوش می شوند.

ب) فرار: ترکیبات فرار بسته به نوع ناخالصی می توانند هم باعث افزایش دمای جوش و یا کاهش آن شوند .

چگونگی جوشیدن یک مایع

وقتی که فشار بخار یک مایع با فشار جو برابر می شود، مایع شروع به جوشیدن می‌کند . در این دما ، بخار حاصل در داخل مایع سبب ایجاد حباب و غلیان خاص جوشش می‌شود . تشکیل حباب در دمای پایینتر از نقطه جوش غیر‌ ممکن است ، زیرا فشار جو  بر سطح مایع که بیش از فشار داخل آن است ، مانع از تشکیل حباب می‌شود . دمای مایع در حال جوش تا هنگامی که تمام مایع بخار نشده است ، ثابت می‌ماند در یک ظرف بدون درپوش حداکثر فشار بخاری که هر مایع می‌تواند داشته باشد برابر با فشار جو می‌باشد .

فشار بخار هر مایع تنها از روی دما معین می‌شود . بنابراین اگر فشار بخار ثابت باشد دما نیز ثابت است . برای ثابت ماندن دمای یک مایع در حال جوش باید به آن گرما داده شود. زیرا در فرایند جوش مولکولهای با انرژی زیاد از مایع خارج می‌شوند. اگر سرعت افزایش گرما بیش از حداقل لازم برای ثابت نگهداشتن دمای مایع در حال جوش باشد، سرعت جوشش زیاد می‌شود ولی دمای مایع بالا نمی رود.

روش های تعیین نقطه جوش:

به دو روش می توان نقطه جوش مواد را مشخص کرد : ۱) روش میکرو . ۲) روش ماکرو

تفاوت این دو روش در مقدار ماده ای است که در اختیار داریم . روش میکرو به مقدار کمی ماده نیاز دارد و از دستگاه های سادهه و به شکل ساده استفاده می شود.

دمای جوش  

در میان هیدروکربنها به نظر می‌رسد که عوامل تعیین کننده دمای جوش ، عمدتا وزن مولکولی و شکل مولکولی باشند ؛ این چیزی است که از مولکولهایی که عمدتا با نیروهای واندروالسی در کنار یکدیگرند ، انتظار می‌رود . در الکلها نیز با افزایش تعداد کربن ، دمای جوش بالا می‌رود و با شاخه‌دار شدن زنجیر ، دمای جوش پایین می‌آید. اما نکته غیر عادی ، در مورد الکلها این است که آنها در دمایی بالا به جوش می‌آیند . این دماهای جوش ، بسیار بالاتر از دمای جوش هیدروکربنها با وزن مولکولی یکسان است و حتی از دمای جوش بسیاری ترکیبها با قطبیت قابل ملاحظه بالاتر است . چگونه این پدیده را تبیین می‌کنیم؟ بدیهی است پاسخ این است که الکلها ، همانند آب ، مایع‌های بهم پیوسته هستند . دمای جوش بالای آنها به علت نیاز به انرژی بیشتر برای شکستن پیوندهای هیدروژنی است که مولکولها را در کنار یکدیگر نگه داشته‌اند . اگر چه اترها و آلدئیدها هم اکسیژن دارند ، اما هیدروژن در آنها فقط با کربن پیوند دارد ، این نوع هیدروکربنها آنقدر مثبت نیستند که بتوانند با اکسیژن ، پیوند قابل ملاحظه ای ایجاد کنند

شرح آزمایش (روش میکرو ):

ابتدا یک لوله مویین بر می داریم و یک طرف آن را روی شعله مسدود می کنیم سپس لوله مویین را از وسط دو تکه می کنیم. لوله هایی که یک سمت آن مسدود شده است مورد نیاز ماست.یک لوله آزمایشی بر می داریم و لوله مویین مورد نظر را از سر باز وارد لوله آزمایش می کنیم . حدود ۱ الی ۵/۱ سی سی از مایع مورد نظر که می خواهیم نقطه جوش آن را تعیین کنیم داخل لوله آزمایش می ریزیم. سپس توسط یک چسب نواری لوله آزمایش را به یک دما سنج متصل می کنیم بطوریکه مخزن جیوه ای دماسنج مماس با انتهای لوله آزمایش قرار گیرد. مجموعه خود را توسط گیره متصل به سه پایه وارد حمام دما قرار می دهیم تا حرارت غیر مستقیم ببیند.

ما در اینجا از حمام آب گرم استفاده می کنیم (می توانیم نتیجه بگیریم که دمای جوش مایع مورد نظر از ۱۰۰ درجه کمتر است.) وقتی کل سیستم آماده شد حرارت را روشن می کنیم آنقدر حرارت می دهیم تا از انتهای لوله مویین داخل لوله آزمایش حباب خارج شود.حبابها  ابتدا با سرعت کم وتعداد کم خارج می شود ولی پس از گذشت زمان تعداد و سرعت آنها افزایش می یابد. وقتیکه  حباب ها بصورت یکپارچه و متوالی خارج شدند حرارت را قطع می کنیم . اگر با شعله کار می کنیم تنها کشیدن شعله از زیر بشر کافیست ولی اگر با Heater کار میکنیم باید کاملا بشر را از روی آن جدا کنیم و تنها خاموش کردن Heater کافی نیست. با قطع کردن حرارت حمام سرد شده و دمای مایع مورد نظر کاهش می یابد لذا تعداد حباب ها کم می شود تا زمانیکه تمام می شوند. لحظه ای که هیچ حبابی خارج نشود و مایع مورد نظر از لوله مویین شروع به بالا رفتن کند باید دما خوانده شود و ثبت گردد . این دما نقطه جوش ما خواهد بود.

ما این کار را بر اساس تعریف نقطه جوش انجام می دهیم چون ما آنقدر به مجموعه حرارت می دهیم تا مایع به جوش آمده و حباب از آن خارج شود . خارج شدن حباب ها نشان دهنده آن است که فشار بخار مایع از فشار اتمسفر بیشتر است. وقتی حرارت را قطع می کنیم تعداد حباب ها کم می شود تا لحظه ای که دیگر هیچ حبابی خارج نمی شود و این به معنی آن است که فشار بخار مایع کاهش می یابد تا لحظه ای که با فشار اتمسفر برابر می شود بنابراین اگر ما این لحظه را ثبت کنیم همان دمای نقطه جوش خواهد بود.

 


نوشته شده در تاريخ دو شنبه 27 آذر 1391برچسب:, توسط aryan

 

تقطیر اغلب یکی از بهترین روش های خالص سازی برای مایعات است . در این عمل مایع را به کمک حرارت تبخیر می کنند و بخار مربوط را در ظرف جداگانه ای متراکم می کنند و محصول تقطیر را به دست می آورند.

هنگامی که  ناخالصی غیر فراری به مایع اضافه شود فشار بخار مایع تنزل پیدا می کند. علت این عمل این است که وجود جزء غیر فرار بر تبخیر مولکول های فراری که در سطح مایع بوده تاثیر گذاشته و قابلیت تبخیر مایع (فشار بخار مایع ) کم می شود. بنابراین باید درجه حرارت را بالا برد تا فشار بخار محلول در سطح محلول به فشار اتمسفر برسد. به عبارت دیگر نقطه جوش یک محلول حاوی جسم غیر فرار همواره از نقطه جوش حلال خالص بالا تر بوده و این صعود نقطه جوش با غلظت ماده حل شده متناسب است.

 

تقطیر دارای انواع گوناگونی می باشد:

۱ . تقطیر ساده :

این روش برای خالص سازی مایعاتی بکار می رود که ناخالصی موجود در آنها غیر فرار باشد.

وجود ناخالصی های غیرفرّار در مایع سبب کاهش فشار بخارآن می شود، زیرا وجود جزء غیر فرار به مقدار زیاد، غلظت جزء اصلی فرّار را پایین می آورد و قابلیت تبخیر مایع کم می شود، اماپس از تقطیر در باقیمانده ی تقطیر باقی می ماند و مایع به صورت خالص تقطیر می شود.

به طورکلی، بخاراتی که در سطح مایع است بیشتر از جسم فرّار تشکیل شده است و کمتر از جسم غیر فرّار است. ( قانون رائولت و دالتون )              

چنانچه مخلوطی از دو یا چند مایع داشته باشیم و دمای جوش آن ها به حد کافی با هم تفاوت داشته باشد، جدا کردن آن ها از طریق تقطیر ساده امکان پذیراست. ابتدا مایعی که نقطه ی جوش کمتری دارد تقطیر می شود و سپس اجزاء دیگر مخلوط، به تناسب افزایش دمای جوششان تقطیر می شوند و بدین ترتیب می توان آن ها را از یک دیگر جدا نمود. می توان گفت اختلاف نقطه ی جوش باید بیش از ٨٠ درجه سانتیگراد باشد.

برای تقطیر ساده، بالن تقطیر، مُبرد، رابط، دماسنج، و بالن دریافت کننده لازم است. نحوه آماده کردن دستگاه مطابق شکل زیر است در تقطیر یک مایع خالص، درجه حرارت دهانه ی خروجی رابط با درجه حرارت مایع جوشان بالن تقطیر، چنانچه بالن زیاده ازحد گرم نشود، یکسان است. چنانچه فقط اندازه گیری دمای جوش، مورد نظر باشد، می توان بدون مُبرد مقدار دمای جوش را تعیین کرد.

۲ . تقطیر جزء به جزء :

اگر مخلوطی از دو یا چند مایع داشته باشیم یعنی اینکه در مخلوط ناخالصی فرار وجود داشته باشد برای جداسازی آنها از تقطیر جزء به جزء استفاده می شود.

ستونهای تقطیر جز به جز انواع متعددی دارند و در تمام آنها یک مسیر عمودی برای انتقال بخار از ظرف تبخیر به مبرد وجود دارد . در یک ستون تقطیر در شرایط ایده آل بین فاز های مایع و بخار در سراسر ستون تعادل برقرار می شود و فاز بخار بالایی تقریبا به طور کامل از جزء فرارتر تشکیل می شود و فاز مایع پایینی نسبت به جزئی که فراریت کمتری دارد غنی تر می شود.می توان با یک ستون طویل ترکیب هایی را که اختلاف کمی در نقطه جوش دارند به طور رضایت بخشی از هم جداسازی نمود.معمولی ترین راه ایجاد تماس لازم بین فازهای بخار و مایع این است که ستون با مقداری ماده بی اثر مانند شیشه یا سرامیک یا تکه های فلزی پر شود که سطح تماس وسیعی را فراهم می کنند. حفظ افت مناسبی از درجه حرارت در ستون شرط بسیار مهمی برای یک تقطیر جز به جز خوب است. در حالت مطلوب درجه حرارت پایین ستون برابر نقطه جوش جز غیر فرار است . این درجه حرارت دائما در طول ستون کم می شود تا در دهانه خروجی به نقطه جوش جز فرار برسد.چنانچه ظرف به شدت گرم شود و بخار با سرعت بسیار زیادی حرکت کند تقریبا تمام ستون بطور یکنواخت گرم می شود و تفکیکی صورت نمی گیرد.

تقطیر در خلاء (تحت فشار کاهش یافته):

اگر یک ترکیب در حلالی حل شده باشد که به گرما حساس بوده و در دمای بالا تجزیه گردد با کاهش فشار , نقطه جوش حلال را کاهش می دهیم تا از تجزیه شدن ترکیب مورد نظر جلوگیری نمائیم.

تقطیر با بخار آب :

همان تقطیر ساده است با این تفاوت که هنگام تقطیر بخار آب را وارد دستگاه تقطیر می کنند. بخار آب باعث می شود که فشار بخار تغییر کند (فشار بخار کاذب ایجاد شود) بخار آب می تواند ترکیباتی که معمولا در آب حل نمی شودرا در خود حل کند مثلا روغن های خوراکی که از آفتابگردان یا سویا گرفته می شوند دارای بو هستند (بعلت ترکیبات آلی موجود در آنها) لذا از سوراخ های ته مخزن بخار آب وارد آن می کنند, حباب های حاوی بخار آب ناخالصی های موجود در روغن را در هنگام عبور از ترکیب حل می کنند و از سطح روغن خارج می شوند.همچنین ترکیبات آلی دیگری که دمای جوش آنها از دمای جوش آب کمتر است توسط بخار آب گرم شده و به بخار تبدیل می شوند و به طرف بالا حرکت می کنند و از سیستم خارج می شوند

شرح آزمایش (تقطیر ساده):

ابتدا بالونی را به یک گیره می بندیم و مخلوطی را که می خواهیم تقطیر (خالص سازی ) داخل بالون می ریزیم و دو عدد سنگ جوش داخل آن می اندازیم. یک سه راهی را که دهانه های آن به مقدار بسیار کمی چرب شده است به دهانه بالون متصل کرده و یک طرف آن را به مبرد (کندانسور) متصل می کنیم و مبرد را به گیره دیگری وصل می نماییم. به دهانه دیگر سه راهی یک ترمومتر متصل کرده یا با درپوش چوب پنبه ای مسدود می نماییم. در صورت استفاده از ترمومتر مخزن آن باید روبروی شاخه جانبی قرار گیرد.لوله پایین  مبرد را با شلنگ به ورودی آب و قسمت بالا را به خروجی آب متصل می کنیم. به طوری که هیچ گونه نشتی آب وجود نداشته باشد. شلنگ مورد استفاده بایستی نرم باشد و هنگام اتصال از فشار آوردن بیش از اندازه به مبرد اجتناب شود چون سبب شکستن آن می گردد. آب سرد باعث تبدیل بخار به مایع (میعان) می گردد شیر آب باید به آهستگی باز شود تا از جدا شدن شلنگ ها از مبرد جلوگیری شود. به هنگام عمل تقطیر نیز جریان بسیار کمی از آب کفایت می کند. برای جمع آوری مایع  تقطیر شده یک ارلن در محل خروجی مبرد قرار می دهیم با حرارت دادن بالون , مایع خالص از دهانه مبرد خارج می گردد که در این لحظه می توان دما را ثبت نمود که همان نقطه جوش است . در تمام مدت تقطیر مایع دما ثابت باقی می ماند. وقتی که حجم محلول موجود در بالن به حدود ۵ میلی لیتر رسید را متوقف می کنیم.

مزیتی که در تعیین نقطه جوش به روش تقطیر وجود دارد این است که اگر ناخالصی غیر فرار در مخلوط وجود داشته باشد تأثیر آنچنانی بر روی نقطه جوش نخواهد داشت . چون بخار ترکیب بالا آمده است و در حالت جوش این بخارات با مایع مورد نظر در حال تعادل می باشند لذا وقتی دمای بخار خوانده می شود همان دمای جوش مایع است

 


نوشته شده در تاريخ دو شنبه 27 آذر 1391برچسب:, توسط aryan

 

اندازه گیری نقطه ذوب (به روش میکرو)

الف)تعیین نقطه ذوب

نقطه ذوب یکی از ثابت های فیزیکی بسیار مفید می باشد که اطلاعاتی در مورد درجه خلوص و مشخصات ماده در اختیار قرار می دهد و با مقدار بسیار کمی از نمونه و با وسایل ارزان قیمتی قابل اندازه گیری می باشد.

نقطه ذوب دمایی است که در آن جسم جامد یا مایع خود در حال تعادل است و تا زمانی که این تعادل برقرار است دما ثابت می ماند ولی وقتی تمام جامد به مایع تبدیل شد حرارت داده شده باعث بالا رفتن دمای مایع می گردد.نقطه ذوب جسم به عوامل زیر بستگی دارد:

ساختمان ترکیب:

هر قدر ساختمان ترکیب متقارن تر باشد نقطه ذوب آن بیشتر خواهد بود.

ناخالصی:

وجود ناخالصی در ترکیب باعث کاهش نقطه ذوب می شود . یک جسم جامد دارای یک شبکه کریستالی (بلوری) است که این شبکه ها دارای اشکال هندسی معینی می باشد , وجود ناخالصی در ساختمان جسم باعث در هم ریختن شبکه مولکولی و سست شدن آن می گردد. اگر در هنگام حرارت دادن یک ترکیب محدوده دمایی ذوب یعنی دمایی که جسم شروع به ذوب شدن می کند تا دمایی که بطور کامل ذوب می شود کم باشد (مثلا ۸۰ تا ۸۱ درجه سانتی گراد) می توان نتیجه گرفت که جسم ناخالصی نداشته یا ناخالصی آن بسیار کم است اما اگر محدوده ذوب وسیع باشد (مثلا ۸۰ تا ۹۰ درجه سانتی گراد) ناخالصی ترکیب زیاد بوده و نمی توان دمای ذوب دقیقی برای آن مشخص نمود. در این حالت باید ابتدا جسم را خالص نمود و سپس نقطه ذوب آن را تعیین کرد.تغییر فشار باعث تغییر قابل ملاحظه ای در نقطه ذوب نمی گردد زیرا تغییر حالت از جامد به مایع با تغییر حجم قابل ملاحظه ای همراه نیست.

برای تعیین نقطه ذوب بایستی نکات زیر را در نظر بگیریم:

۱_ ابتدا از این که ماده مورد نظر خالص است اطمینان حاصل کنیم.

۲_ اگر ماده از طریق سنتز به دست آمده است باید آن را کاملا خشک کنیم.

ب) رفتار نقطه ذوب

نقطه ذوب یا دامنه ذوب به دو صورت مشخص کننده درجه خلوص یک جسم است.اول این که یک جسم هر قدر خالص تر باشد نقطه ذوب آن بالاتر است.دوم این که هر قدر جسم خالص تر باشد دامنه ذوب آن کوتاهتر است.افزودن مقدار قابل توجهی از یک ناخالصی به یک ماده خالص معمولا سبب کاهش نقطه ذوب بر حسب میزان ناخالصی می شود. دلیلش این است که نقطه انجماد یک ماده وقتی که یک جسم خارجی به آن اضافه شود پایین می آید.نقطه انجماد همان نقطه ذوب ( جامد به مایع ) است با این تفاوت که عمل در جهت عکس انجام می شود (مایع به جامد) .

در مخلوط هایی که شامل مقادیر کم از ناخالصی هستند( کمتر از ۱۵ درصد ) هستند دامنه نقطه ذوب اغلب نشانه میز ان خلوص است.ماده ای که ذوب آن در دامنه کوچکی انجام می شود به طور عادی باید خالص باشد ولی مخلوط ها اغلب در نقطه مینیمم نقطه ذوب – ترکیب درصد,تشکیل اوتکتیک یا دون گداز می دهند که آن هم به طور نا گهانی ذوب می شود. از آنجا که همه مخلوط های دوتایی تشکیل دون گداز نمی دهند در این مورد فرض می شود که هر مخلوط دوتایی رفتاری مشابه آنچه در بالا گفته شد دارد. باید دقت کرد بعضی ترکیبات بیش از یک دون گداز تشکیل می دهند . علیرغم این حالت های مختلف نقطه ذوب و دامنه آن هر دو شاخص مفیدی برای خلوص اند و تقریبا به راحتی تعیین می شوند.

شرح آزمایش

ابتدا یک جسم را در هاون ریخته و آن را کاملا ساییده و به صورت پودر نرم در می آوریم.سپس یک لوله مویینه برمی داریم و یک سر آن ( معمولا سر قرمز رنگ ) را داخل شعله به طور یکنواخت حرارت می دهیم تا بسته شود.

نکته: هنگام بستن سر لوله مویینه آنرا به طور مرتب در شعله چرخانده تا در حرارت خم نشود.

هنگامی که از بستن سر لوله مویینه مطمئن شدیم آن را به طور عمودی چندین بار وارد نمونه جامد کرده تا حدود ۴ تا ۵ میلی متر از سر لوله پر شود.

نمونه مورد نظر را بایستی به ته لوله مویینه منتقل کنیم که برای این کار از لوله بلندی که دو طرف آن باز است استفاده می کنیم. لوله مویینه را از بالای لوله که روی زمین قرار گرفته چندین بار به طرف پایین رها می کنیم تا نمونه به  ته لوله مویینه انتقال یابد.

لوله مویینه را توسط چسب یا کش یا نخ به یک دماسنج متصل می کنیم به طوری که مخزن دما سنج و نمونه در مجاورت هم قرار گیرند.

به نمونه باید حرارت یکنواخت غیر مستقیم داده شود تا به تدریج ذوب گردد. برای این کار از یک حمام ( یک بشر یا لوله تیل ) استفاده می شود که از منبع حرارتی مستقیم و یک ظرف حاوی مایع که نقش رساندن حرارت غیر مستقیم را دارد استفاده می شود اگر حلال یا مایعی که در بشر ریخته می شود آب باشد به آن حمام آب گفته می شود که تا دمای ۱۰۰ درجه سانتی گراد می توان از آن استفاده کرد . اگر دمای ذوب جسم از ۱۰۰ درجه سانتی گراد بیشتر باشد دیگر نمی توان از آب استفاده کرد و به جای آن از پارافین یا روغن سیلیکون استفاده می شود که به آن حمام پارافین ( روغن ) گفته می شود. بایستی دقت کرد که هنگام استفاده از حمام روغن به هیچ عنوان آب داخل حمام راه نیابد چون در این صورت مایع داخل حمام در مواقع حرارت دادن به بیرون پاشیده می شود.

وقتی این مجموعه آماده شد آن را توسط یک گیره در داخل مایع حمام قرار می دهیم به طوری که به ته ظرف و کناره های آن تماس پیدا نکند و سر لوله مویینه خارج از مایع باشد.سپس شعله را روشن نموده و دما را به تدریج بالا می بریم وقتی نمونه شروع به ذوب شدن کرد دما را یاد داشت نموده و نیز وقتی تمامی نمونه ذوب شد دما را یادداشت می کنیم.

بهتر است دو لوله مویینه از نمونه جامد تهیه کنیم و با نمونه اول نقطه ذوب تقریبی را بدست آورده و سپس با نمونه دوم نقطه دوم را بدست آوریم.

 


نوشته شده در تاريخ دو شنبه 27 آذر 1391برچسب:, توسط aryan

 

تبلور مجدد

تبلور مجدد یکی از بهترین روش های خالص سازی برای خالص کردن یک جامد است.در این روش اختلاف در حلالیت سبب جدا شدن اجسام از یک دیگر و یا سبب جدا شدن ناخالصی از یک جسم میشود.در تبلور مجدد مولکول ها به تدریج از محلول جدا شده و در ردیف های منظمی به یکدیگر متصل می گردند که به عنوان شبکه شناخته می شوند. در این روش ساختمان بلورین جسم جامد را با انحلال در حلال مناسب بطور کامل از بین می برند و سپس اجازه می دهند تا بلورهای جسم به صورت یک شبکه بلوری مجددا تشکیل شوند.نا خالصی ها معمولا در محلول باقی می مانند.

تبلور مجدد شامل چندین مرحله می باشد:

۱)انتخاب حلال مناسب

۲)انحلال جسم مورد تخلیص در نقطه جوش یا نزدیک آن

۳)صاف کردن محلول داغ برای جدا نمودن ناخالصی های نامحلول

۴)تبلور از محلولی که در حال سرد شدن است

۵)جدا کردن بلورها از محلولی که در آن شناور هستند

۶)شستشوی بلورها برای خارج کردن محلولی که به آنها آغشته است

۷)خشک کردن بلورها

حلال مورد نیاز برای تبلور مجدد باید دارای چندین خصوصیت باشد:

۱)مهمترین ویژگی حلال این است که جسم جامد مورد نظر را در دمای آزمایشگاه در خود حل نکند و در نقطه جوش در خود حل کند

۲)در دمای بالا ناخالصی را در خود حل نکند ا در دمای پایین در خود حل کند

۳)نقطه جوش خیلی پایینی نداشته باشد

۴)بهتر است نقطه جوش حلال کمتر از نقطه ذوب جسم باشد

۵)حلال یا جسم مورد نظر واکنش شیمیایی ندهد

۶)حلال از درجه سمی بودن پایینی برخوردار بوده و از لحاظ اقتصادی مقرون به صرفه باشد.مثلا از آب,الکل و کلروفرم که همگی شرایط لازم برای تبلور را دارند استفاده کنند

اگر نیاز به انتخاب حلال مناسب برای تبلور مجدد داریم به روش زیر عمل می کنیم:

ابتدا چند لوله آزمایش را بر می داریم و مقداری (حدود چند بلور شکر ) از جسم جامد را درون آن می ریزیم.سپس یک میلی لیتر از حلال هایی را که در اختیار داریم در هر کدام از لوله ها می ریزیم و آنها را شدیدا تکان می دهیم آنگاه می بینیم که آیا جسم در حلال حل شده است یا خیر؟ در مرحله بعد لوله ها را تا رسیدن به نقطه جوش حرارت می دهیم و باز نگاه می کنیم که آیا جسم در حلال حل شده است یا خیر؟ و نتایج را ثبت می کنیم.ما دنبال حلالی می گردیم که در دمای آزمایشگاه جسم را در خود حل نکند و در دمای جوش بتواند جسم را در خود حل کند.معمولا از آب به عنوان یک حلال مناسب استفاده می کنند.در صورتی که آب به عنوان حلال مناسب برای تبلور مجدد باشد می توان عمل انحلال را در یک بشر و در فضای باز انجام داد در غیر این صورت برای اجتناب از استنشاق گازهای سمی عمل انحلال باید در یک بالن و یا با استفاده از یک مبرد و به صورت رفلاکس انجام گیرد.

شرح آزمایش:

یک بشر برداشته و حدود یک گرم استانیلید ناخالص را درون آن می ریزیم و به آن حدود ۲۰ میلی لیتر آب اضافه میکنیم و حرارت ککیدهیم تا به جوش آید.در صورتی که جسم به صورت کامل حل نشد هر بار به آن ۱۰ میلی لیتر آب اضافه نموده ومجددا حرارت می دهیم تا به جوش آید.مدت زمان جوشیدن نبایستی طولانی شود چون حلال اضافه شده تبخیر می گردد.افزایش حلال را تا زمانی که تمام جسم در دمای جوش حل شود ادامه می دهیم البته پس از هر بار افزودن حلال اگر اجسامی که به نظر می آید ناخالص باشند (موادی پرز مانند ) در دمای جوش حل نشدند حدود ۱۰ میلی لیتر حلال اضافه تر می ریزیم و آن را به صورت داغ روی یک کاغذ صافی معمولی صاف می کنیم در این مرحله نبایستی صاف کردن با استفاده از مکش انجام گیرد چون جریان هوا باعث سرد شدن حلال گردیده و کریستالها نا به هنگام تشکیل میگردند.افزایش حلال اضافه به منظور جلوگیری از تبلور نا به هنگام در این مرحله می باشد.بهتر است در این مرحله در حین صاف کردن بشر را مرتبا به طور ملایم حرارت دهیم . افزایش حلال خیلی بیش از مقدار مورد نیاز ممکن است که مانع تشکیل رسوب گردد.

محلول (صاف شده ) را در کناری قرار داده تا به مرور زمان سرد شده و بلور های جسم تشکیل گردند.هنگام سرد شدن محلول نبایستی آن را به هم زد چون باعث می شود که بلورهای ریزی به دست آید .پس از تشکیل کامل بلورها این مجموعه را روی کاغذ صافی معمولی یا روی قیف بوخنر صاف کرده تا جسم بر روی کاغذ صافی باقی بماند.ناخالصی هایی که در دمای بالا نا محلول هستند را با صاف کردن محلول های داغ و ناخالصی هایی که در دمای پایین محلول هستند را از طریق صاف کردن محلول سرد جداسازی می نماییم.

پس از صاف کردن بلورها معمولا می توان مقدار دیگری بلور به دست آورد . برای این کار میتوان محلول زیر صافی را در حمام آب یخ قرار داد یا ابتدا کمی آن را حرارت داده تا مقداری از حلال آن خارج شده و تغلیظ شود و سپس اجازه دهیم تا متبلور شود . بلورهایی که در این مرحله به دست می آید به اندازه مرحله اول خالص نیستند.

به منظور شستن بلورها می توان مقداری از حلال سرد ( در اینجا آب ) را روی کریستالهای جسم ریخته و اجازه داد تا حلال شستشو از بلورها خارج شود.

در صورت استفاده از خرطوم آبی می توان برای خشک کردن سریع تر بلورها چند دقیقه هوا را از درون بلورهای موجود در قیف عبور داد و سپس آنها را روی شیشه ساعت قرار داده و برای چند ساعت در هوا قرار داد. در صورت لزوم می توان از آون برای خشک کردن بلورها استفاده نمود و یا با گذاشتن این بلورها در دسیکاتور خلا سرعت خشک کردن آنها را تسریع نمود

 


نوشته شده در تاريخ یک شنبه 26 آذر 1391برچسب:, توسط aryan


مقاله ی معرفی انواع مبردها و بررسی مبرد R134a
 پیرامون :

مبردهای رایج

آمونیاک

دی اکسید کربن

هیدروکربن ها ، کلروفلوئوروکربن ها ، هیدروکلروفلوئوروکربن ها ، هیدروفلوئوروکربن ها

مبردهای مخلوط

چیلرهای سیکل جذبی

سرمایش با هوا یا سرمایش رایگان

سرمایش تبخیری با چرخی ی باز

سیستم های جذب سطحی

ابزارهای ترموالکتریکی

تبرید با سیکل گاز ، تبرید ترمونیک ، تبرید مغناطیسی ، تبرید ترمونیک ،تبرید به روش حباب پالس

تبرید به روش گرما ، صوتی

سرمایش صوتی


سانتریفیوژ Centrifuge
 


کالریمتر Calorimeter

 



چراغ بونزن Bunsen burner
 


اتوکلاو Autoclave

 



لوله تیل Thiele tube

 



لوله آزمایش Test Tube

 



لوله جوش

 



بالن اشلنک

 



ارلن یا بالن ارلنمایر

 



قیف جداکننده ( Separatory funnel )

 


پیپت ( Pipettes )

 



استوانه مدرج یا مزور

 



دسیکاتور و طرز استفاده از آن

 



گیلاس مدرج ( Conical measure )

 



مبرد Condenser

 



بورت
 



قیف بوخنر

 



بشر

 



انواع بالن

 




 نکات نگهداری الکترود ph :
تمیز کردن غشاء الکترود ph
تست کردن الکترود
روشی برای نوسازی و تمیز کردن الکترود
حذف برخی آلودگی ها و رسوبات خاص
اندازه گیری شیب الکترود

Ph متر و الکترود

 



عصاره گیر سوکسله

 



روش کلدال ( Kjeldahl )

 



آشنایی با علائم در آزمايشگاه
 

 

توضیح کامل تک تک و تمامی وسایل ازمایشگاه به همراه عکس

به صورت مقاله و جزوه توسط تیم ارشد اماده شده

 

برای خرید با شماره یا ایمیل زیر تماس حاصل فرمایید 

 

  mail : m.aryan55@yahoo.com                   tell : 09357795285

 


.: Weblog Themes By Pichak :.


----------------- --------------------------

صفحه قبل 1 ... 62 63 64 65 66 ... 74 صفحه بعد

  • اس ام اس عاشقانه
  • گوگل رنک